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Abstract

The combinatory entrop®.m»in complex polymer solution has been calculated based on a lattice model. An inter-moleculaiSpast of
in solution of polymer consisting of rod and flexible pa8ger—r iS given by Spierr—/R = Snterr-/R + (1 — map,/r) In(1 — map,/r) —
¢>(1 — mar) In(1 — mar) whereSperr/R= —(1 — ¢) IN(1 — ¢,) — (/1) Ing, is that in the Flory—Huggins theowy; is the volume

fraction of the polymer anththe number of repeated units in a polymer chain. The repeated unit consists of a rod part and a flexible part and

candaare the number of segments in the rod part and flexible part, respectively, and the total number of segments per polynrefitigain is
Sheerr—¢iN this work is essentially the same as that in the solution of rod-like particles derived by Flory except for the lasiSggmnirnThe
combinatory entropy in the solution of star polynSa sixCalculated in this work is given BerstadR = Snterr—r/R — ¢o{ (N — D/r}In ¢,
wheren is the number of branches per star polymer. The critical concentratigin solution of the star polymer calculated in this work is
given by¢, . = 1/[1 + (r/mY?] which is larger than that in solution of linear polymer of the same molecular weight of the polymer. An effect
of chain stiffness on the critical concentration is also discuse&2D00 Elsevier Science Ltd. All rights reserved.
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1. Introduction Miller [3], Huggins [4] and Kurata [5]. We have also calcu-
lated theS,,mpin a solvated polymer solution where a strong

It is well known that the combinatory entropy in solution interaction between polymer segments and solvent mole-
of flexible polymer in solvent is given by the Flory—Huggins cules occurs. Th&,,m, in the solvated polymer solution
theory [1]. After the basic theory, many theories have been [19] gives a good prediction to the experimental data of
derived. Guggenheim [2], Miller [3], Huggins [4] and negative partial molar entropy of dilution over low polymer
Kurata [5] have derived the combinatory entropy of polymer concentration [20].
solution by using higher order approximations for chain  In this work we have proposed a general and simple
connectivity than that in the original Flory—Huggins theory. method for the calculation of combinatory entropy in a
These modified theories give essentially the same expres-complex polymer solution such as star polymers. We have
sion of combinatory entropy in polymer solution and also examined whether it is possible to reproduce the same
approach to that in the Flory—Huggins theory at the limit S, as the Flory rod theory by using our method. The
of z— oo wherezis the coordination number of the lattice. critical concentration of complex polymer solution calcu-
In 1956, the combinatory entropy in solution of semi-flex- lated in this work has been examined through the experi-
ible chain molecules and of rod-like particles has been mental data.
derived based on the lattice model [6,7] by Flory and the  The general method for calculation of combinatory
theories have been applied to solutions of liquid crystalline entropy in complex polymer solution is given in the follow-
polymers [8—14] and semi-rigid macromolecules such as ing sections.
polypeptide [15—18] extensively.

In a previous work [19] we have derived the combinatory 1.1. Inter-molecular contribution in combinatory entropy
entropy Somp in polymer solutions where polymer chains ) ) ) )
consist of rod and flexible parts. THoms in solutions of We use th_e lattice model in the calculation of co_mbma-
polymer with rod and flexible parts has been found to give fOry entropy in polymer solution. Thi, polymers withr

the same function as those derived by Guggenheim [2], S€gments per polymer ai solvent molecules are inserted
sequentially to the lattice sites where the number of total

* Tel: + 81-776-27-8622: fax+ 81-776-27-8767. lattice sites iN = N; + rN,. If all polymer chains are discon-
E-mail addresssaeki@matse.fukui-u.ac.jp (S. Saeki). nected intarN, monomers, the number of configurations for
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the solution is given by connection of segment to the chain. The probabMf, rog
T | ) in EQ. (6) is smaller thaRpie; r_qdue to(rN, — /(N — i) =
QO N./{ Nl.(rNZ)'} @b Q’)Z(l - i¢1/rN2) < ¢2 and therefor@nter,rod < Snter,F—H- In
LN -, a previous work [19] we have derived an equation for an
=¢ b, 2 intermediate case betwe&a_, and Pr.q In this work, we
where the solution consists oR, molecules of monomer ~ Propose a more general and simple method for the calcula-
(species 2),N; molecules of solvent (species 1) and the tion of c.ombinatory entropy in a(_:omplex polymer solution.
volume fraction of monomers is given b, = IN,/(N; + Qon3|der a_polymgr chain Whlf:h consstgmfrepeated
N,) =1 — ¢,. Some configurations in Eq. (1) satisfy a units. The unit 'COHSIS'(S of a flexible part withsegments
condition of the polymer solution thatsegments or mono- ~ nd rod part withc segments and thema + c¢)=r — 1.
mers are connected. Then the number of configurations for an! N€ probabilityP in Eq. (3) is expressed by the products of

inter-molecular par2;psin polymer solution is given by individual probability factor op, and g wherep, and p are
probability for a flexible and rod parts, respectively. There
Ointerps = {2oP (€ are two approximate methods for an evaluatiopgih the

whereP is a probability to pick up the configurations relevant COMPlex polymer chain. The first method is given fy=

to the polymer solution from the extremely large number of ¢2 for all flel\lxriTl?aIe pa(rlssmgfmal\b in polymer chains. There-
configurations of2;. fore P,=p,2 "= ¢, > for all flexible parts. The other

In the original Flory—Huggins theors_, is given by approxima.tion is _thapa depends on the polymer chains. For
examplep, in the first polymer is given by and that of the
Pinterr_t = by N 4 second polymer is given hy, = {(rN, — mo)/(N — mo)} 2.

A combinatory entropy for the inter-molecular part in the
polymer solution calculated by, = ¢, for all flexible parts

Qinter,F—H = ¢17N1 ¢£N2 (5) is given by

The physical meaning of Eq. (4) is as follows. When a Snte/R= Sinter, F-HR + (1 — mod,/r) In(1 — mag,/r)
polymer chain is formed in the lattice, a first monomer is _ _ _
connected to a head one and the second one to the first one ¢2(1 = mar) In(1 = mar)

and then the finalr — 1)th monomer is connected to the (€)]
(r — 2)th one. The head segment of the polymer chain can Theg /R for the complicated case fpg mentioned above
move around in the entire lattice space freely, while the s given by

movements ofr — 1) segments is restricted by the bond .

between the segments. TRgern = ¢ 2 is a prob-  Sne/R= Snrerr-/R+{1 +a/c — (1 =1 )y}

ability to fix theN,(r — 1) segments simultaneously to make

and then

N, polymer chains in solution. XIn{1 — map,/r} — d{a/c + ™) In(l — mar)
If P is given by 9
Pinterrod = ("N2/N){ (TN, — 2)/(N — 1)} where Syerr_y i that in the Flory—Huggins theory and is
given by

AN T DN Z VN A= DR = g e WR=—( - ¢ I~ ¢ — (b In gy (10)

(6)
) ) ) o Both equations of Egs. (8) and (9) are different. Eq. (9) is the
an equation derived using Egs. (3) and (6) is given by same as that derived in the previous work [19]. A detailed
Qinterrod = 20Pinterrod = (N1 + No) /(N1 !N!) 7 calculation is given in Appendix.

This is a combinatory entropy of the solution of the rod 1.2. Intra-molecular contribution in combinatory entropy in
polymer with the axis ratio oriented parallel in the solvent  complex polymer solution

and is also equal to that in an ideal mixtureNagfmolecules

of species 1 andN, molecules of species 2. The physical In the Flory—Huggins theory an intra-molecular contribu-
meaning of {rN, — 1)/(N — 1)} in Pinerroq iS as follows. tion in the combinatory entropy of polymer solution is given
When arod polymer is formed, a first monomer is connected by

to a head one and_the monomer i_s fixed permanent!y to the_QimraF_H =[{(@z— /e "V (11)
head. Therefore, in the calculation of the probability of

fixing a second monomer the first segment is omitted from In the case of the solution of polymer with rod and flexible
an ensemble in the calculation of probability. Then the prob- parts, theiy,—¢is given by

ability for the second is given byrN, — 1)/(N — 1) not _ (ma+m N

rN2/I\)I/. Both numbers of %enomiﬁrat(z)r and numerator in Oinrar- = {2~ fe} "(ma-+ my (12
the probability of fixing, decrease one by one for each where each rod parts has one flexible part and the total
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Fig. 1. 9R — ¢, — mathree-dimension plot for polymer solution (model-1) in Eq. (17) wits 1000 m= 10 andz= 2.2.

number of flexible parts in a chain sa+ m. Thezin Eq. segments anbll; solvent molecules isfloPS“t'glr and given by
(12) is an average coordination number. —n Koot N
-Qstarz -Qo[d’z {(X +1@z-1 /e?(} 1 13

) ) ) In the case oh=1 andx=r — 1, Eq. (13) is reduced to
1.3. Combinatory entropy in star polymer solution that of Flory—Huggins theory.

The combinatory entropy of star polymer solution is 1.4. Total combinatory entropy S in complex polymer
derived based on the lattice theory by using a mean field sg|ytions

approximation. Consider a star polymer withsegments
which consists of a core of the star andbranches and The combinatory entropy in the original Flory—Huggins
each branch hag segments and thereforg — 1) = nx theory [1] is given by
We make the star polymer from linear polymer chains i _ _
with x + 1 segments per chain hypothetically. The total SH/R=~(1 = $)In( = ¢2) = (¢2/N)ing
number of segmgnts in thelinear polymgrs ara(x +1) = + (/1) IN[{(z — 1)/6} " Dr] (14)
r +n— 1, which is larger than the original total segment
by n— 1. As is mentioned earlier, the probabiliy in a The combinatory entropy in the rod polymer solution
linear polymer withr segments isj;(zr_l). The probability derived by Flory [7] is
P for nlinear polymer chains witk + 1 segments per chain .
is ¢3* = ¢5 Y wherenx=r — 1 is used. Now we make a Sode/R= Snterr-#/R+ {1 = (1 = yIN¢5}
star polymer with a core made up of a segment by combin- o 2
ing then free ends of the linear polymers. Therefare;- 1) XIN{1 = (L =y o} + ($2/NlInCry") =y + 1]
segments must disappear. The for star polymer (15
. . _1_ _1 — .
with r segments is¢, © "V =4y ”. The intra-  Ap equation derived from Eq. (15) using the maximum
molecular cor:(trlbtf]non for the. star polymer is given bY  condition with respect ty is given by
{(x+ 1)(z— 1)*/&}" where no intra-molecular interaction
between branches is assumed. Sodr/R = Snierr-/R = 2(1 = do)ly + (p/)[IN(ry*) —y — 1]
The configurations for solution ™, star polymers withr (16)
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model-2

Fig. 2. YR — ¢, — mathree-dimension plot for polymer solution (model-2) in Eq. (18) witk 1000 m= 10 andz= 2.2.

wherey is defined byy = r sin 6 and 6 is an angle of incli-
nation of a particle to the domain axis.

The combinatory entropy for rod-like polymer solutions
in this work designated by model-1 is given by

Sl'od,model-llR: Snter,F—H/R + (1 - m0¢2/r) In(l - quﬁz/r)
— (1 — madr)¢, In(1 — mar)

+(¢ho/r) IN[{ (z — D/e} ™ ™ (ma+ m)] (17)

while that in the rod-like polymer solution in the previous
work [19] designated by model-2 is

S’od,model-le: Snter,F—H/R + {1 +ac—(1- r—1)¢2}
xIn{1 — meg,/r} — ¢p{aic + r~1) In(1 — mar)

+(¢ho/r) IN[{ (z— D/e} ™ ™ (ma+ m)] (18)

The combinatory entropy for star polymer solution is
given by

Sita/R = Sntere-/R — do{(n — D/r}In ¢,

+(¢o/t) IN[{(n + 1 — D/npnz — 1) Ve D)
(19

wherenx=r — 1.

2. Results

Calculations of9R for various polymer solutions have
been carried out and are shown in three dimensions in Figs.
1-3. The variables in Figs. 1 and 2 are polymer concentra-
tion ¢, and the total number of flexible segmemts per
chain, while those in Fig. 3 ar¢, andy. They in the Flory
theory is related to flexibility of polymer because= 1
corresponds to a rigid rod-polymer apd= r to the flexible
polymer. Therefore, both parametgmndmagive the same
measure of the flexibility in the polymer chain.

The flat region ofSR= 0 in Figs. 1-3 corresponds to
regions showing negative values 8fR because the plot
range in all figures is set to be larger than zero. The negative
regions are nonsense thermodynamically. The critical line
between the positive and negative region corresponds to a
complete order state af2 =1 andSR= 0. It is demon-
strated that a similar behavior 8fRin the Flory-rod model
in Fig. 3 is obtained in our model-1 and -2 with a small
coordination number = 2.2. The similar behavior o&R
showing a limited negative region is found in this work for
satisfying(z — 1)/e < 1.

Values ofSRin the Flory rod model in Fig. 3 decreases
suddenly in the vicinity ofy = 1 with decreasing, while
SRin Figs. 1 and 2 decreases slowly with decreasingaf
in the vicinity of ma= 0. It is found in the Flory rod model
that there is a small region showing negatl@® in the
vicinity of ¢, =0 and y=1, which means that the
complete order region appears in the dilute solution of rod
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Fig. 3.9R — ¢, — y three-dimension plot for rod-like polymer solution (Flory-rod model) in Eq. (16) with 100Q

polymer in solvent. The behavior was not observed in our A main reason for a decrease R with increasingy
models in Figs. 1 and 2. It is suggested from Figs. 1-3 that over large values of in the Flory-rod model is mainly
the behavior of maximum d¥R with respect to chain flex-  attributed to the negative term-(y + 1)¢/r, which
ibility parameters such awaandy is one of the important  comes from the intra-molecular contribution 8fin Eq.
features characterizing the rod-like polymer solution. (16). In our model the intra-molecular contribution of
The combinatory entropy of star polymer soluti®g,, (¢o/r)(ma+ m) In{(z— 1)/e} with (z— 1)/e <1 is nega-
calculated by Eqg. (19) witlz= 3.0 is shown in Fig. 4. tive and increases witma, which is the same behavior as
The Sy, differs from S_y by —¢,{(n— 1)/r}In ¢, and the Flory-rod model. On the other hand the increas&/Bf
Sitarinter = Sr-Hinter The Somy/R in the flexible polymer with increase ofy in the vicinity ofy = 1 is responsible to
solution for variousz is shown in Fig. 5. The parameter  the negative term of-2(1 — ¢,)/y from the inter-molecular
reflects the flexibility of the polymer chain in the Flory— contribution in the Flory model. In our model the increase of
Huggins theory wher&, /R increases with increasirg SRwith increase omaover the smalimais responsible to a
positive term of—¢,(1 — mar) In(1 — mar) = —p{ (1L +
ma)/r} In{ (1 + may/r} from the inter-molecular contribu-
3. Discussions tion of Sin Eq. (17). The positive term increases witta
The essential difference between our model and Flory model
Itis interesting to compare the combinatory entropy in the is thatS, /R is the negative-2 in the vicinity ofy = 1 and
rod-like polymer solution in this work with that in the Flory ¢, = 0 but that is zero in the vicinity ap, = 0 in this work.
theory. If a relationy =r — mc is used, Eq. (15) in the In our model the ratio ofz — 1) andeis critically impor-
Flory-rod theory becomes the same function as Eq. (17) tant. A maximum point iR vs. macurve appears only in
derived in this work except for the last positive term the case ofz— 1)/e < 1. The quantityz — 1)/eis related to
—¢»(1 — mdr)In(1 — mar). It is also found through the a ratio of gain of entropy due to chain flexibilitg — 1) to
calculation that the values &R in Eqg. (15) of the Flory- loss of one dimensional communal entropy due to chain
rod model are negative over the range of entire concentra-connection per segment. If the — 1)/e is less than one,
tion of ¢, andy > 1, although the values &R in Eq. (16) the negative intra-molecular contribution &R can over-
derived using the maximum condition are positive over the come the positive inter-molecular one over the range of
limited range ofy and ¢, as is shown in Fig. 3. The term largema, which leads to an ordered state in spite of increas-
—2(1 — ¢,)/y plays an important role in the Flory-rod ing of chain length of flexible part.
model. Recently an effect of polymer architectures on the phase
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Star polymer solution

Fig. 4.SR — ¢, — n three-dimension plot for star polymer solution in Eq. (19) wits 1000 andz = 3.0.

Flory-Huggins model

Fig. 5. 9R — ¢, — zthree-dimension plot for the Flory—Huggins model in Eq. (14) with 100Q
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diagram of polymer solution has been investigated exten-r = 200 andmdr = 0.8 are 0.090 and 0.101, respectively,
sively [21-25]. Nose et al [21,22] have found the critical while those for = 200 andmcr = 0.5 are 0.070 for model-
concentration of the star polystyrene—cyclohexane systemisl and 0.074 for model-2. In both the models the,
different from that of linear polystyrene of the same mole- increases with increase ofor.

cular weight. According to the Flory—Huggins theory the

critical concentrationp, . is given by 4. Conclusion

baciexible = V(L +11?) (20 _ . _ ,
The combinatory entropy of solution of rod-like particles
The ¢, for star polymer solution calculated by Eq. (19) is  first derived by Flory has been reproduced by our method of
given by calculation of combinatory entropy for polymer solution.
o 172 An origin of specific behavior of rod-like polymer solution

P2estar = VI + (/W™ @D has been analyzed in detail. It is suggested that the combi-
Eq. (21) means that an apparent number of segments in stanatory entropy in rod-like polymer solution is characterized
polymer isr/n which is the number of segments for one by a maximum point with respect to the flexible parameters
branch. The value ofp,. for star polymer with 6 arms  such asy andmaat constant polymer concentrations.
calculated by Eq. (21) is 0.0719 for= 100Q while that The combinatory entropy for star polymer solution has
in the Flory—Huggins model by Eq. (20) i, = 0.0306 been derived in this work. We have done a critical test for
The experimental data show thas . in the linear polystyr-  the star polymer model through the experimental data of
ene(PS)—cyclohexane system for molecular weight of critical concentration in star and linear polymer solutions.
M, ~ 10° is about 0.03, while that in star PS with 6.3 Our model has predicted the experimental result that the
arms with the same molecular weight is about 0.04. Our critical concentration in the star polymer solution is larger
model predicts a tendency of large . in the star polymer  than that in the solution of the linear polymer of the same
solution compared to that in linear polymer solution molecular weight. It has also been predicted in this work
successfully. Nose et al [22] reported that ihg. in solu- that the critical concentration in the solution of polymer
tions of randomly branched PS and comb-shaped PS inwith rod and flexible parts increases with increasing
methyl cyclohexane are larger than that linear PS with segments for the rod part in a polymer chain.
M, = 10° by about 0.02. These results suggest that the
combinatory entropy in complex polymer solutions depend
on the polymer architecture.

.The poly_mer chain consisting of rod and f!exible parts in - p 1 Dperivation of Eq. (8) for model-1
this work gives a general model of complex linear polymers

such as copolymer, rod polymer with some flexible parts |, this model the probability factor for all flexible parts is

and semi-flexible polymer. The phase diagram in the solu- 4 and that for the rod part depends on an inserting order of
tion of linear polymer has been investigated by the Monte 51ymers to lattice. The total probabili is given by
Carlo method. Panagiotopoulos et al [26] have calculated

the critical concentration of solution of flexible and semi- Protatr = [(IN2/N){(rNz — mo/(N — mo}
flexible polymer and found the critical concentration fee me man,
100 in both solutions is nearly the same. Hu et al [27] have  *~{N2 = (N2 = hmG/AN = (Nz — mg [7H(rN2/N)

Appendix A

found that the critical concentration of polymer solution (Al)
with r = 200 is about¢,, = 0.16, which is much larger
than 0.066 calculated by the Flory—Huggins theory. = [{ ('No/mg)!(N/mc — Nyp)!}{ (rNo/mc — Np)!(N/mo)!} ¢
The ¢, . has been calculated for solution of polymer with -
rods and flexible parts by the same procedure as in the X (rN/N)™" (A2)
Flory—Huggins theory. In model-1 in this work thg, . is _ _
determined by an equation Eq. (8) is obtained by2 = P12 and SR=In (/N
) . where2, = N!/{N;!(rN,)!}. In the calculation the Stirling
G2/ = ppe)” — UL — o) + 11 approximation is used.
B2 51— By’ =0 (22 A.2. Deviation of Eq. (9) for model-2
and in model-2 by The detailed deviation of Eq. (9) is shown in Ref. [19]
1— 2 _ 91— 41—t butitis deriygd more simply as follows. In this mpdel, both
P21~ do0)” = U = o) ' the probability factors for rod parts and flexible parts
—(BP3 )L — 1 Y1 — Bro)? =0 23 depend on an inserting order of polymers to lattice. The

mat+mc

probability factor for the first polymer igrN,/N)
where 8 = madr. The values ok, in model-1 and -2 for ~ for rod and flexible parts and that of the second one is
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[(rN, — mo/(N — mo]™ ™ and xth polymer [(rN, —
(x— 1Dmo/N — (x — hmg ™ ™ The total P for the
polymer solution is

Piotal2 = [(rNo/N){ (rN, — mo/(N — mo)}

~{rN, — (N, — )mg/{N — (N, — 1)mc}](ma+m)
(A3)

= [{rN/m& I(N/mc— Ny) !4 (rNo/me— Np) ! (N/moy1} Y
(Ad)

wherema+ mc=r — 1 is used. Eq. (9) is obtained from
) = Piota2820 andSR = In (UN.

References

[1] Flory PJ. Principles of polymer chemistry. Ithaca, NY: Cornell
University Press, 1953.

[2] Guggenheim EA. Proc R Soc: A 1944;183:203.

[3] Miller AR. Proc Cambridge Philos Soc 1943;39:54.

[4] Huggins ML. Ann NY Acad Sci 1942;43:9.

S. Saeki / Polymer 41 (2000) 8331-8338

[5] Kurata M. Ann NY Acad Sci 1961;89:635.
[6] Flory PJ. Proc R Soc 1956;234:60.
[7] Flory PJ. Proc R Soc 1956;234:73.
[8] Flory PJ, Abe A. Macromolecules 1978;11:1119.
[9] Flory PJ, Ronca G. Mol Cryst Liq Cryst 1979;54:289.
[10] Flory PJ, Ronca G. Mol Cryst Lig Cryst 1979;54:311.
[11] Warner M, Flory PJ. J Chem Phys 1980;73(12):6327.
[12] Nakajima A, Hayashi T, Ohmori M. Biopolymers 1968;6:973.
[13] Goebel KD, Miller WG. Macromolecules 1970;3:64.
[14] Wee EL, Miller WG. J Phys Chem 1971;75:1446.
[15] Flory PJ, Leonard Jr WJ. J Am Chem Soc 1965;87:2102.
[16] Flory PJ. Macromolecules 1978;11:1138.
[17] Flory PJ. Macromolecules 1978;11:1141.
[18] Matheson Jr RR, Flory PJ. Macromolecules 1981;14:954.
[19] Saeki S. Fluid Phase Equilib 1997;136:79.
[20] Eichinger BE, Flory PJ. Trans Faraday Soc 1968;64:2066.
[21] Yokoyama H, Takano A, Okada M, Nose T. Polymer 1991;32:3218.
[22] Satoh S, Okada M, Nose T. Polym Bull 1985;13:277.
[23] Cowie IJMG, Horta A, McEwen 1J, Prochazka K. Polym Bull
1979;1:329.
[24] Terao K, Okumoto M, Nakamura Y, Norisuye T, Teramoto A. Macro-
molecules 1998;31:6885.
[25] Lue L, Prausnitz JM. Macromolecules 1997;30:6650.
[26] Sheng Y-J, Panagiotopoulos AZ. Macromolecules 1996;29:4444.
[27] Yan Q, Liu H, Hu Y. Macromolecules 1996;29:4066.



