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Abstract

The combinatory entropyScombin complex polymer solution has been calculated based on a lattice model. An inter-molecular part ofScomb

in solution of polymer consisting of rod and flexible partsSinter,r–f is given bySinter;r–f =R� Sinter;F–H=R1 �1 2 mcf2=r� ln�1 2 mcf2=r�2
f2�1 2 mc=r� ln�1 2 mc=r� whereSinter;F–H=R� 2�1 2 f2� ln�1 2 f2�2 �f2=r� lnf2 is that in the Flory–Huggins theory,f2 is the volume
fraction of the polymer andm the number of repeated units in a polymer chain. The repeated unit consists of a rod part and a flexible part and
c anda are the number of segments in the rod part and flexible part, respectively, and the total number of segments per polymer chain isr. The
Sinter,r–f in this work is essentially the same as that in the solution of rod-like particles derived by Flory except for the last term inSinter,r–f. The
combinatory entropy in the solution of star polymerSinter,starcalculated in this work is given bySinter;star=R� Sinter;F–H=R2 f2{ �n 2 1�=r} ln f2

wheren is the number of branches per star polymer. The critical concentrationf2,c in solution of the star polymer calculated in this work is
given byf2;c � 1=�1 1 �r=n�1=2�which is larger than that in solution of linear polymer of the same molecular weight of the polymer. An effect
of chain stiffness on the critical concentration is also discussed.q 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It is well known that the combinatory entropy in solution
of flexible polymer in solvent is given by the Flory–Huggins
theory [1]. After the basic theory, many theories have been
derived. Guggenheim [2], Miller [3], Huggins [4] and
Kurata [5] have derived the combinatory entropy of polymer
solution by using higher order approximations for chain
connectivity than that in the original Flory–Huggins theory.
These modified theories give essentially the same expres-
sion of combinatory entropy in polymer solution and
approach to that in the Flory–Huggins theory at the limit
of z! ∞ wherez is the coordination number of the lattice.
In 1956, the combinatory entropy in solution of semi-flex-
ible chain molecules and of rod-like particles has been
derived based on the lattice model [6,7] by Flory and the
theories have been applied to solutions of liquid crystalline
polymers [8–14] and semi-rigid macromolecules such as
polypeptide [15–18] extensively.

In a previous work [19] we have derived the combinatory
entropy Scomb in polymer solutions where polymer chains
consist of rod and flexible parts. TheScomb in solutions of
polymer with rod and flexible parts has been found to give
the same function as those derived by Guggenheim [2],

Miller [3], Huggins [4] and Kurata [5]. We have also calcu-
lated theScombin a solvated polymer solution where a strong
interaction between polymer segments and solvent mole-
cules occurs. TheScomb in the solvated polymer solution
[19] gives a good prediction to the experimental data of
negative partial molar entropy of dilution over low polymer
concentration [20].

In this work we have proposed a general and simple
method for the calculation of combinatory entropy in a
complex polymer solution such as star polymers. We have
also examined whether it is possible to reproduce the same
Scomb as the Flory rod theory by using our method. The
critical concentration of complex polymer solution calcu-
lated in this work has been examined through the experi-
mental data.

The general method for calculation of combinatory
entropy in complex polymer solution is given in the follow-
ing sections.

1.1. Inter-molecular contribution in combinatory entropy

We use the lattice model in the calculation of combina-
tory entropy in polymer solution. TheN2 polymers withr
segments per polymer andN1 solvent molecules are inserted
sequentially to the lattice sites where the number of total
lattice sites isN � N1 1 rN2: If all polymer chains are discon-
nected intorN2 monomers, the number of configurations for
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the solution is given by

V0 � N!={ N1!�rN2�!} �1�

� f2N1
1 f2rN2

2 �2�
where the solution consists ofrN2 molecules of monomer
(species 2),N1 molecules of solvent (species 1) and the
volume fraction of monomers is given byf2 � rN2=�N1 1
rN2� � 1 2 f1: Some configurations in Eq. (1) satisfy a
condition of the polymer solution thatr segments or mono-
mers are connected. Then the number of configurations for an
inter-molecular partV inter,PSin polymer solution is given by

V inter;PS� V0P �3�
whereP is a probability to pick up the configurations relevant
to the polymer solution from the extremely large number of
configurations ofV0.

In the original Flory–Huggins theoryPF–H is given by

Pinter;F–H � f �r21�N2
2 �4�

and then

V inter;F–H � f2N1
1 f2N2

2 �5�
The physical meaning of Eq. (4) is as follows. When a
polymer chain is formed in the lattice, a first monomer is
connected to a head one and the second one to the first one
and then the final�r 2 1�th monomer is connected to the
�r 2 2�th one. The head segment of the polymer chain can
move around in the entire lattice space freely, while the
movements of�r 2 1� segments is restricted by the bond
between the segments. ThePinter;F–H � f�r21�N2

2 is a prob-
ability to fix theN2(r 2 1) segments simultaneously to make
N2 polymer chains in solution.

If P is given by

Pinter;Rod� �rN2=N�{ �rN2 2 1�=�N 2 1�}
…�rN2 2 { �r 2 1�N2 2 1}�=�N 2 { �r 2 1�N2 2 1}�

�6�
an equation derived using Eqs. (3) and (6) is given by

V inter;Rod� V0Pinter;Rod� �N1 1 N2�!=�N1!N2!� �7�
This is a combinatory entropy of the solution of the rod
polymer with the axis ratior oriented parallel in the solvent
and is also equal to that in an ideal mixture ofN1 molecules
of species 1 andN2 molecules of species 2. The physical
meaning of {�rN2 2 1�=�N 2 1�} in Pinter;Rod is as follows.
When a rod polymer is formed, a first monomer is connected
to a head one and the monomer is fixed permanently to the
head. Therefore, in the calculation of the probability of
fixing a second monomer the first segment is omitted from
an ensemble in the calculation of probability. Then the prob-
ability for the second is given by�rN2 2 1�=�N 2 1� not
rN2=N: Both numbers of denominator and numerator in
the probability of fixing, decrease one by one for each

connection of segment to the chain. The probabilityPinter,Rod

in Eq. (6) is smaller thanPinter,F–Hdue to�rN2 2 i�=�N 2 i� �
f2�1 2 if1=rN2� , f2 and thereforeSinter;rod , Sinter;F–H: In
a previous work [19] we have derived an equation for an
intermediate case betweenPF–H andPRod. In this work, we
propose a more general and simple method for the calcula-
tion of combinatory entropy in a complex polymer solution.

Consider a polymer chain which consists ofm repeated
units. The unit consists of a flexible part witha segments
and rod part withc segments and thenm�a 1 c� � r 2 1:
The probabilityP in Eq. (3) is expressed by the products of
individual probability factor ofpa and pc wherepa and pc are
probability for a flexible and rod parts, respectively. There
are two approximate methods for an evaluation ofpa in the
complex polymer chain. The first method is given bypa �
f2 for all flexible parts ofmaN2 in polymer chains. There-
fore Pa � pN2ma

a � f�N2ma�
2 for all flexible parts. The other

approximation is thatpa depends on the polymer chains. For
examplepa in the first polymer is given byfma

2 and that of the
second polymer is given bypa � { �rN2 2 mc�=�N 2 mc�} a

:

A combinatory entropy for the inter-molecular part in the
polymer solution calculated bypa � f2 for all flexible parts
is given by

Sinter=R� Sinter;F–H=R1 �1 2 mcf2=r� ln�1 2 mcf2=r�
2f2�1 2 mc=r� ln�1 2 mc=r�

�8�
TheSinter=R for the complicated case forpa mentioned above
is given by

Sinter=R� Sinter;F–H=R1 {1 1 a=c 2 �1 2 r21�f2}

� ln{1 2 mcf2=r} 2 f2{ a=c 1 r21� ln�1 2 mc=r�
�9�

whereSinter;F–H is that in the Flory–Huggins theory and is
given by

Sinter;F–H=R� 2�1 2 f2� ln�1 2 f2�2 �f2=r� ln f2 �10�
Both equations of Eqs. (8) and (9) are different. Eq. (9) is the
same as that derived in the previous work [19]. A detailed
calculation is given in Appendix.

1.2. Intra-molecular contribution in combinatory entropy in
complex polymer solution

In the Flory–Huggins theory an intra-molecular contribu-
tion in the combinatory entropy of polymer solution is given
by

V intra;F–H � �{ �z2 1�=e} �r21�r�N2 �11�
In the case of the solution of polymer with rod and flexible
parts, theV intra,r–f is given by

V intra;r–f � �{ �z2 1�=e} �ma1m��ma1 m��N2 �12�
where each rod parts has one flexible part and the total
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number of flexible parts in a chain isma1 m: Thez in Eq.
(12) is an average coordination number.

1.3. Combinatory entropy in star polymer solution

The combinatory entropy of star polymer solution is
derived based on the lattice theory by using a mean field
approximation. Consider a star polymer withr segments
which consists of a core of the star andn branches and
each branch hasx segments and therefore�r 2 1� � nx:
We make the star polymer fromn linear polymer chains
with x 1 1 segments per chain hypothetically. The total
number of segments in then linear polymers aren�x 1 1� �
r 1 n 2 1; which is larger than the original total segmentr
by n 2 1: As is mentioned earlier, the probabilityP in a
linear polymer withr segments isf�r21�

2 : The probability
P for n linear polymer chains withx 1 1 segments per chain
is fnx

2 � f�r21�
2 wherenx� r 2 1 is used. Now we make a

star polymer with a core made up of a segment by combin-
ing then free ends of the linear polymers. Therefore,�n 2 1�
segments must disappear. TheP for star polymer
with r segments is fr212�n21�

2 � f�r2n�
2 : The intra-

molecular contribution for the star polymer is given by
{ �x 1 1��z2 1�x=ex} n where no intra-molecular interaction
between branches is assumed.

The configurations for solution ofN2 star polymers withr

segments andN1 solvent molecules isV0PN2
star and given by

Vstar� V0�f �r2n�
2 { �x 1 1��z2 1�x=ex} n�N2 �13�

In the case ofn� 1 andx� r 2 1; Eq. (13) is reduced to
that of Flory–Huggins theory.

1.4. Total combinatory entropy S in complex polymer
solutions

The combinatory entropy in the original Flory–Huggins
theory [1] is given by

SF–H=R� 2�1 2 f2�ln�1 2 f2�2 �f2=r�lnf2

1 �f2=r� ln�{ �z2 1�=e} �r21�r� �14�
The combinatory entropy in the rod polymer solution
derived by Flory [7] is

Srod;F=R� Sinter;F–H=R1 {1 2 �1 2 y=r�f2}

� ln{1 2 �1 2 y=r�f2} 1 �f2=r��ln�ry2�2 y 1 1�
�15�

An equation derived from Eq. (15) using the maximum
condition with respect toy is given by

Srod;F=R� Sinter;F–H=R2 2�1 2 f2�=y 1 �f2=r��ln�ry2�2 y 2 1�
�16�

S. Saeki / Polymer 41 (2000) 8331–8338 8333
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wherey is defined byy� r sinu andu is an angle of incli-
nation of a particle to the domain axis.

The combinatory entropy for rod-like polymer solutions
in this work designated by model-1 is given by

Srod;model-1=R�Sinter;F–H=R1 �1 2 mcf2=r� ln�1 2 mcf2=r�
2 �1 2 mc=r�f2 ln�1 2 mc=r�

1�f2=r� ln�{ �z2 1�=e} �ma1m��ma1 m�� (17)

while that in the rod-like polymer solution in the previous
work [19] designated by model-2 is

Srod;model-2=R�Sinter;F–H=R1 {1 1 a=c 2 �1 2 r21�f2}

� ln{1 2 mcf2=r} 2 f2{ a=c 1 r21� ln�1 2 mc=r�

1�f2=r� ln�{ �z2 1�=e} �ma1m��ma1 m�� (18)

The combinatory entropy for star polymer solution is
given by

Sstar=R� Sinter;F–H=R2 f2{ �n 2 1�=r} ln f2

1�f2=r� ln�{ �n 1 r 2 1�=n} n�z2 1��r21�
=e�r21��

�19�
wherenx� r 2 1:

2. Results

Calculations ofS=R for various polymer solutions have
been carried out and are shown in three dimensions in Figs.
1–3. The variables in Figs. 1 and 2 are polymer concentra-
tion f2 and the total number of flexible segmentsma per
chain, while those in Fig. 3 aref2 andy. They in the Flory
theory is related to flexibility of polymer becausey� 1
corresponds to a rigid rod-polymer andy� r to the flexible
polymer. Therefore, both parametersy andmagive the same
measure of the flexibility in the polymer chain.

The flat region orS=R� 0 in Figs. 1–3 corresponds to
regions showing negative values ofS/R because the plot
range in all figures is set to be larger than zero. The negative
regions are nonsense thermodynamically. The critical line
between the positive and negative region corresponds to a
complete order state ofV � 1 andS=R� 0: It is demon-
strated that a similar behavior ofS/Rin the Flory-rod model
in Fig. 3 is obtained in our model-1 and -2 with a small
coordination numberz� 2:2: The similar behavior ofS=R
showing a limited negative region is found in this work forz
satisfying�z2 1�=e , 1:

Values ofS=R in the Flory rod model in Fig. 3 decreases
suddenly in the vicinity ofy� 1 with decreasingy, while
S=R in Figs. 1 and 2 decreases slowly with decreasing ofma
in the vicinity of ma� 0: It is found in the Flory rod model
that there is a small region showing negativeS=R in the
vicinity of f2 � 0 and y� 1; which means that the
complete order region appears in the dilute solution of rod
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Fig. 2.S=R2 f2 2 ma three-dimension plot for polymer solution (model-2) in Eq. (18) withr � 1000; m� 10 andz� 2:2:



polymer in solvent. The behavior was not observed in our
models in Figs. 1 and 2. It is suggested from Figs. 1–3 that
the behavior of maximum ofS=R with respect to chain flex-
ibility parameters such asmaandy is one of the important
features characterizing the rod-like polymer solution.

The combinatory entropy of star polymer solutionSstar

calculated by Eq. (19) withz� 3:0 is shown in Fig. 4.
The Sstar differs from SF–H by 2f2{ �n 2 1�=r} ln f2 and
Sstar;inter . SF–H;inter: The Scomb=R in the flexible polymer
solution for variousz is shown in Fig. 5. Thez parameter
reflects the flexibility of the polymer chain in the Flory–
Huggins theory whereScomb=R increases with increasingz.

3. Discussions

It is interesting to compare the combinatory entropy in the
rod-like polymer solution in this work with that in the Flory
theory. If a relationy� r 2 mc is used, Eq. (15) in the
Flory-rod theory becomes the same function as Eq. (17)
derived in this work except for the last positive term
2f2�1 2 mc=r� ln�1 2 mc=r�: It is also found through the
calculation that the values ofS=R in Eq. (15) of the Flory-
rod model are negative over the range of entire concentra-
tion off2 andy . 1; although the values ofS=R in Eq. (16)
derived using the maximum condition are positive over the
limited range ofy andf2 as is shown in Fig. 3. The term
22�1 2 f2�=y plays an important role in the Flory-rod
model.

A main reason for a decrease ofS=R with increasingy
over large values ofy in the Flory-rod model is mainly
attributed to the negative term2�y 1 1�f2=r ; which
comes from the intra-molecular contribution ofS in Eq.
(16). In our model the intra-molecular contribution of
�f2=r��ma1 m� ln{ �z2 1�=e} with �z2 1�=e , 1 is nega-
tive and increases withma, which is the same behavior as
the Flory-rod model. On the other hand the increase ofS=R
with increase ofy in the vicinity of y� 1 is responsible to
the negative term of22�1 2 f2�=y from the inter-molecular
contribution in the Flory model. In our model the increase of
S=Rwith increase ofmaover the smallmais responsible to a
positive term of2f2�1 2 mc=r� ln�1 2 mc=r� � 2f2{ �1 1
ma�=r} ln{ �1 1 ma�=r} from the inter-molecular contribu-
tion of S in Eq. (17). The positive term increases withma.
The essential difference between our model and Flory model
is thatSinter=R is the negative22 in the vicinity ofy� 1 and
f2 � 0 but that is zero in the vicinity off2 � 0 in this work.

In our model the ratio of�z2 1� ande is critically impor-
tant. A maximum point inS=R vs.macurve appears only in
the case of�z2 1�=e , 1: The quantity�z2 1�=e is related to
a ratio of gain of entropy due to chain flexibility�z2 1� to
loss of one dimensional communal entropy due to chain
connection per segment. If the�z2 1�=e is less than one,
the negative intra-molecular contribution toS=R can over-
come the positive inter-molecular one over the range of
largema, which leads to an ordered state in spite of increas-
ing of chain length of flexible part.

Recently an effect of polymer architectures on the phase
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Fig. 4.S=R2 f2 2 n three-dimension plot for star polymer solution in Eq. (19) withr � 1000 andz� 3:0:

Fig. 5.S=R2 f2 2 z three-dimension plot for the Flory–Huggins model in Eq. (14) withr � 1000:



diagram of polymer solution has been investigated exten-
sively [21–25]. Nose et al [21,22] have found the critical
concentration of the star polystyrene–cyclohexane system is
different from that of linear polystyrene of the same mole-
cular weight. According to the Flory–Huggins theory the
critical concentrationf2,c is given by

f2;c;flexible � 1=�1 1 r 1=2� �20�
Thef2,c for star polymer solution calculated by Eq. (19) is
given by

f2;c;star� 1=�1 1 �r=n�1=2� �21�
Eq. (21) means that an apparent number of segments in star
polymer is r=n which is the number of segments for one
branch. The value off2,c for star polymer with 6 arms
calculated by Eq. (21) is 0.0719 forr � 1000; while that
in the Flory–Huggins model by Eq. (20) isf2;c � 0:0306:
The experimental data show thatf2,c in the linear polystyr-
ene(PS)–cyclohexane system for molecular weight of
Mw , 106 is about 0.03, while that in star PS with 6.3
arms with the same molecular weight is about 0.04. Our
model predicts a tendency of largef2,c in the star polymer
solution compared to that in linear polymer solution
successfully. Nose et al [22] reported that thef2,c in solu-
tions of randomly branched PS and comb-shaped PS in
methyl cyclohexane are larger than that linear PS with
Mw � 106 by about 0.02. These results suggest that the
combinatory entropy in complex polymer solutions depend
on the polymer architecture.

The polymer chain consisting of rod and flexible parts in
this work gives a general model of complex linear polymers
such as copolymer, rod polymer with some flexible parts
and semi-flexible polymer. The phase diagram in the solu-
tion of linear polymer has been investigated by the Monte
Carlo method. Panagiotopoulos et al [26] have calculated
the critical concentration of solution of flexible and semi-
flexible polymer and found the critical concentration forr �
100 in both solutions is nearly the same. Hu et al [27] have
found that the critical concentration of polymer solution
with r � 200 is aboutf2;c � 0:16; which is much larger
than 0.066 calculated by the Flory–Huggins theory.

Thef2,c has been calculated for solution of polymer with
rods and flexible parts by the same procedure as in the
Flory–Huggins theory. In model-1 in this work thef2,c is
determined by an equation

f2;c=�1 2 f2;c�2 2 1=�1 2 f2;c�1 1 2 r21

2b3f2
2;c=�1 2 bf2;c�2 � 0 �22�

and in model-2 by

f2;c=�1 2 f2;c�2 2 1=�1 2 f2;c�1 1 2 r21

2�b2f2
2;c��1 2 r21�=�1 2 bf2;c�2 � 0 �23�

whereb � mc=r : The values off2,c in model-1 and -2 for

r � 200 andmc=r � 0:8 are 0.090 and 0.101, respectively,
while those forr � 200 andmc=r � 0:5 are 0.070 for model-
1 and 0.074 for model-2. In both the models thef2,c

increases with increase ofmc=r :

4. Conclusion

The combinatory entropy of solution of rod-like particles
first derived by Flory has been reproduced by our method of
calculation of combinatory entropy for polymer solution.
An origin of specific behavior of rod-like polymer solution
has been analyzed in detail. It is suggested that the combi-
natory entropy in rod-like polymer solution is characterized
by a maximum point with respect to the flexible parameters
such asy andmaat constant polymer concentrations.

The combinatory entropy for star polymer solution has
been derived in this work. We have done a critical test for
the star polymer model through the experimental data of
critical concentration in star and linear polymer solutions.
Our model has predicted the experimental result that the
critical concentration in the star polymer solution is larger
than that in the solution of the linear polymer of the same
molecular weight. It has also been predicted in this work
that the critical concentration in the solution of polymer
with rod and flexible parts increases with increasing
segments for the rod part in a polymer chain.

Appendix A

A.1. Derivation of Eq. (8) for model-1

In this model the probability factor for all flexible parts is
f2 and that for the rod part depends on an inserting order of
polymers to lattice. The total probabilityP is given by

Ptotal;1 � ��rN2=N�{ �rN2 2 mc�=�N 2 mc�}
…{ rN2 2 �N2 2 1�mc} ={ N 2 �N2 2 1�mc} �mc�rN2=N�maN2

�A1�

� �{ �rN2=mc�!�N=mc2 N2�!} ={ �rN2=mc2 N2�!�N=mc�!} �mc

� �rN2=N�maN2 (A2)

Eq. (8) is obtained byV � Ptotal;1V0 and S=R� ln V=N
whereV0 � N!={ N1!�rN2�!} : In the calculation the Stirling
approximation is used.

A.2. Deviation of Eq. (9) for model-2

The detailed deviation of Eq. (9) is shown in Ref. [19]
but it is derived more simply as follows. In this model, both
the probability factors for rod parts and flexible parts
depend on an inserting order of polymers to lattice. The
probability factor for the first polymer is�rN2=N�ma1mc

for rod and flexible parts and that of the second one is
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��rN2 2 mc�=�N 2 mc��ma1mc and xth polymer ��rN2 2
�x 2 1�mc�={ N 2 �x 2 1�mc} �ma1mc

: The total P for the
polymer solution is

Ptotal;2 � ��rN2=N�{ �rN2 2 mc�=�N 2 mc�}
…{ rN2 2 �N2 2 1�mc} ={ N 2 �N2 2 1�mc} ��ma1m�

�A3�

� �{ rN2=mc} !�N=mc2 N2�!�={ �rN2=mc2 N2�!�N=mc�!} ��r21�

�A4�
wherema1 mc� r 2 1 is used. Eq. (9) is obtained from
V � Ptotal;2V0 andS=R� ln V=N:
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